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tangential velocity gradient across the interface, and can
be thought of as a viscous counterpart of the Kelvin–The time-dependent motion for a two-layer Couette flow con-

sisting of fluids of different viscosities is simulated numerically by Helmholtz instability.
using an algorithm based on the Volume of Fluid (VOF) method. A difficulty in the theory of flows involving more than
Interfacial tension is included via a continuous surface force (CSF) one fluid lies in the nonuniqueness of solutions, and the
algorithm. The algorithm is fine-tuned to handle the motion which

question of which interface shapes would be observed.is driven by a shear-induced interfacial instability due to the viscosity
A first step toward the answer concerns the stability ofstratification. The code is validated against linear theory. Two proto-

typical situations are presented, one at a moderately high Reynolds certain families of interfacial shapes that are observed
number and the other at a lower Reynolds number. The initial condi- in experiments. In two-layer Couette flow, the base
tion is seeded with the eigenmode of largest growth rate, with velocity profile is linear in each fluid with a flat interface.
amplitudes that are varied from those that capture the linear regime

Linear stability analysis of this family of solutions estab-to larger values for nonlinear regimes. Issues of free surface advec-
lishes windows in parameter space where the solutiontion and viscosity interpolation are discussed. The onset of nonline-

arity occurs at the interface and is quadratic, followed by wave may be observed. At the onset of a finite wavenumber
steepening. Q 1997 Academic Press instability, the weakly nonlinear analysis of [5] determines

whether the time-periodic traveling wave solution would
saturate nonlinearly. This analysis determines windows
of parameters where, for sufficiently small amplitude1. INTRODUCTION
perturbations and over long times, the traveling wave
solution is expected. These results are described in Sec-Liquid-liquid systems exhibit phenomena which form a

subject rich in interdisciplinary science. Applications in- tion 2. Past the weakly nonlinear regime, a fully numerical
simulation is required. We are further interested include the production of bicomponent materials and layered

films, and the modeling of bicomponent flows through predicting wave bending and breakup, past the point of
pinch-off of drops, and we require a method whichchannels and pipes [1, 2]. The overall properties of systems

with two fluids are strongly dependent on interface shapes. handles easily the breakup and reformation of interfaces.
In this sense, the methods that have been used to predictIn order to control and use these systems, we must develop

an understanding of the effects of the bulk properties on liquid-liquid jet breakup and subsequent formation of
satellite drops are of relevance. Examples include theinterface evolution.

Our motivation for studying two-layer Couette flow front tracking [6–9] and volume tracking methods [10–12]
which include the volume of fluid scheme. The VOFis that this is one of the simplest of all the shearing

flows of two fluids one might consider. This is a model function is defined as zero in one fluid and one in the
other, and makes a smooth transition from zero to oneproblem which has received much analysis, and has

helped in the development of ideas about more compli- through a thin interfacial region commensurate with the
mesh spacing. Recently, a new code called ‘‘Surfer’’cated two-fluid flows. The problem has also attracted

experimental results [3, 4]. We focus on the instability [13–15] has been developed to simulate two- and three-
dimensional flows with several fluid phases and freedue to viscosity stratification. The jump in the viscosity

from one fluid to the other results in the jump in the interfaces between them. Among the flows they simulate
are sheared liquid-gas interfaces subject to the Kelvin–
Helmholtz instability. There are differences and simi-1 Current address Tessella Support Services plc, 3 Vineyard Chambers,

Abingdon 0X143PX, U.K. larities between Surfer and our code and it would be
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of interest to compare the two in the future. Another also shown for regimes where the waveform is highly non-
linear. The wave shapes found in the numerical simulationsscheme that is under development for two-layer flows

is that of [16] based on the level-set method. are qualitatively similar to those seen in experiments [3, 4].
The problem studied here provides a rather sensitiveAn algorithm for the VOF method was developed in a

two-fluid code called SOLA-VOF [17] which is suited for test for the numerical code in two respects: First, viscosity
difference at the interface is the crucial factor driving thehigh Reynolds number gas-liquid flows, but is found to be

unstable for the calculation of the surface tension forces flow rather than an incidental feature to a flow which is
driven by other mechanisms. We have found that the physi-in the liquid-liquid jet problem [18]. A one-fluid code,

RIPPLE, has been introduced [11] which incorporates the cally correct viscosity interpolation in cells overlapping the
interface is important. We were able to incorporate thisone-fluid VOF algorithm and the continuous surface force

formulation to incorporate surface tension. In the CSF by a minor modification of the code, under the presumption
that the interface is nearly horizontal. In more generalmethod, interfacial surface forces are incorporated as body

forces per unit volume in the momentum equations rather geometries where the interface is not aligned with the
coordinate axes, the correct viscosity interpolation is muchthan as boundary conditions. Instead of a boundary condi-

tion applied at a discontinuous interface, a volume force more complicated. Our results show that, at least for the
class of problems studied here, such an effort would beis used which acts on fluid elements lying within a transition

region of finite thickness. These codes have been exten- worthwhile in future improvements of the code. A second
essential feature of our problem is that the interface shapesively modified and combined to handle a liquid-liquid jet

problem in [18–20], and the resulting VOF/CSF code has propagates essentially as a traveling wave, with a deforma-
tion occuring on a much slower time scale. As a result ofbeen used to predict the experimental data of a jet of an

alkane injected into a tank of stationary immiscible water. this, we found totally useless results unless we introduced
a Galilean transformation to a frame moving with the fluidThough this flow at first glance appears to be essentially

the same as the two-layer Couette flow, the mechanisms on the interface. This is so even though our code satisfies
all of the usual numerical stability conditions. Even withthat drive the unsteady motion are different: jet breakup

is driven by surface tension, while interfacial evolution in the Galilean transformation, our results show an unphysi-
cal formation of steps in the long term. The findings under-the two-layer Couette flow is driven by the jump in shear

rates across the interface. This necessitates the additional score the need for more accurate tracking of the interface.
Higher order methods of interface representation [13–15,issues described in Section 3, on improvements on how to

compute the viscosity when the interface lies within a cell, 27–29, 31] need to be explored.
As a final comment, we note that interfacial instabilitiesand the introduction of a Galilean transformation to elimi-

nate numerical instability in the free surface advection like the one studied here will often lead to three-dimen-
sional structures, see, e.g., [21, 32, 33]. Hence three-dimen-algorithm.

Section 4 concerns numerical results with periodicity in sional simulations will ultimately be needed.
the streamwise direction. This is the first validation of
linear theory against numerical simulations for two-layer 2. STABILITY THEORY FOR TWO-LAYER
Couette flow. To measure the deviation from the base flow, COUETTE FLOW
we use two norms: the maximum of the vertical component
of the velocity and its L2 norm. These are zero in the base We consider plane Couette flow of two layers of immisci-

ble fluids with different viscosities (see Fig. 1). In dimen-flow. The max norm is a pointwise measure of the worst
deviation, while the L2 norm is an averaged quantity, re- sionless variables (x, z), the lower fluid is fluid 1 (with

viscosity e1) and occupies 0 , z , l1 in equilibrium. Weflecting the behavior of the bulk of the fluid. These diag-
nostic tools elucidate the region where the nonlinearity denote the average depth of the upper fluid, or fluid 2 with

viscosity e2 , by l 2 5 1 2 l1 . The governing equations arefirst begins.
We focus on specific flow conditions, and results on the Navier–Stokes equations and incompressibility in each

fluid. At the interface, the kinematic free surface conditiontrends as the conditions are varied are left for future work.
The initial conditions are eigenfunctions derived from the holds, velocity and shear stress are continuous, and the

jump in the normal stress is balanced by interfacial tensionlinearized stability analysis of the base Couette flow. An
important feature is that the location where the first nonlin- and curvature. There are four parameters: the viscosity

ratio m 5 e1/e2 , the average depth of the lower liquid l1 ,earity arises is the interfacial region. For weak nonlinearity,
quadratic behavior is found to be dominant. The interface the interfacial tension parameter T 5 S*/(e2Ui) where S*

is the interfacial tension coefficient and Ui is the dimen-and its neighboring region give birth to the nonlinearity
while the bulk of the fluid behaves linearly, even for rather sional interfacial speed of the base flow, and a Reynolds

number based on the lower fluid R1 5 Uil*r1/e1 , where l*small initial amplitudes. The wave steepening is found to
occur well before any saturation in amplitude. Results are is the dimensional plate separation. The velocity distance,
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role in the stability problem. We compute the eigenmodes
with the Chebyshev-tau method following [5].

The effects of viscosity stratification, interfacial tension,
and speeds determine the stability of two-layer Couette
flow. The relevant equations are written in full in [1] where
further references are given. We focus on the situation
where the longwaves are stabilized by a favorable viscosity
stratification and depths [23], and shortwaves are stabilized
by interfacial tension, so that the flow loses stability at a
single finite wavenumber ac . Such onsets are described in
[5]. Specifically, Table I of [5] shows an onset at m 5 0.5,
l 1 5 0.372, R1 5 10, T 5 0.01, ac 5 6.3 and this is the case
that we shall pursue for numerical simulations. The fluids
are of equal density and the upper fluid is more viscous
than the shallower layer below. Figure 2 shows the growth
rate versus wavenumber for the critical situation as wellFIG. 1. Flow configuration for two-layer Couette flow, 0 , z , 1,
as a moderately higher Reynolds numbers which are rele-0 , x , 2f/a.
vant for Section 4. The critial mode with a 5 6.3 in the
figure is first destabilized (see R1 5 40 curve) by the viscos-
ity difference and inertia, followed by a decrease in thetime, and pressure are made dimensionless with respect
growth rate (R1 5 500). There are other wavenumbers,to Ui , l*, l*/Ui , and r1U2

i as in [5, 21, 22]. With equal
for example, 4.0, where this behavior is also evident.densities, gravitational force is balanced by a pressure gra-

dient and can be neglected. One solution to the governing
2.2. Weakly Nonlinear Theoryequations is the base velocity field (U(z), 0) where

At criticality, the two-layer Couette flow with a flat inter-
face loses stability to a Hopf bifurcation, and a travelingU(z) 5 Hz/l1 , 0 # z # l1 ,

(m/l1)(z 2 1) 1 Up , l1 # z # 1,
(1)

wave solution may be stable in the weakly nonlinear re-
gime. Let F 5 (u1 , v1 , p1 , u2 , v2 , p2 , h) represent thewhere the dimensionless upper plate speed is Up 5 1 1
difference between the total solution and the basic solu-ml2/l1 , and the base pressure field is a constant. The stabil-
tion. Subscripts i denote fluid i. For small F, the equationsity of this solution is addressed for periodic disturbances.
and boundary conditions governing the problem are sche-
matically expressed as LF 5 N2(F, F) 1 N3(F, F, F),2.1. Linear Theory

Squire’s transformation is well known in the problem of
stability of shearing flows of one fluid, where it guarantees
that the smallest critical Reynolds number will occur when
the disturbances are two-dimensional in the plane of the
flow. There is a Squire’s transformation for the two-layer
problem (see Chapter 4 of [1]). Hence, the onset of instabil-
ity also involves a two-dimensional disturbance, as long as
one is dealing with a situation where the flow is stable at low
Reynolds numbers and loses its stability as the Reynolds
number is increased. This is not always the case in two-
layer flows.

Our linearized stability analysis is performed with per-
turbations (u(x, z, t), v(x, z, t)) to the velocity, p(x, z, t)
to the pressure and h(x, t) to the interface height z 5 l1 ,
proportional to exp(iax 1 st). In the special case when
the two fluids are the same, there is a passive interfacial
mode that merely allows the interface to be wavy, leaving
the velocity field the same: (u, v) 5 0, h 5 h0 exp(iax),
s 5 2ia. The stability of the flow in this case is determined FIG. 2. Growth rate Re(s) versus wavenumber a for m 5 0.5,
by the one-fluid bulk modes. When the fluids have different l1 5 0.372, equal densities, zero gravity, and T 5 0.01. R1 5 10, dashed

line—critical case; R1 5 40, solid line; R1 5 500, dotted line.properties, the interfacial mode begins to play an active
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where the quadratic operator N2 derives from the momen- reverse for [18, 19]. The viscosity for each cell is obtained
from a linear interpolation:tum equations and the interface conditions, and the cubic

operator N3 derives from the interface conditions. The
(3)e 5 e2(1 2 F) 1 e1F.critical mode is denoted z(l), where l denotes a bifurcation

parameter, e.g., R1 2 R1c , and the eigenvalue is denoted In the CSF method, the interfacial tension forces are incor-
2s(l) for l . 0. The dynamics is dominated by Z(t)z plus porated as body forces per unit volume in the momentum
its complex conjugate, and the second-order interaction equations, rather than as interface conditions. This volume
terms, where Z(t) denotes the complex time-dependent force acts on fluid elements lying within a transition region
amplitude function. The amplitude evolution equation is of finite thickness, and approximates a discontinuous jump
dZ/dt 1 s(l)Z 5 kuZ u2Z, where k denotes the Landau in the normal stress at the interface due to surface tension
coefficient. There are a number of approaches to calculat- by a continuous transition over the mesh size Dx. This
ing the distortion to the mean flow, and the value of the smearing out of the interface leads to artificial diffusion if
Landau coefficient depends on this. Our approach is to the mesh is not sufficiently fine (cf. mesh convergence
keep the pressure gradient in the flow direction fixed results in Subsection 4.1).
throughout the nonlinear analysis, while the combined vol- The size of the physical domain in the x-direction is
ume flux is not fixed. Our VOF code assumes periodicity assumed to be equal to the wavelength 2f/a of the initial
in the pressures with no condition on the flow rates, so interfacial wave. This imposes the obvious limitation on
that the presusre gradient is fixed throughout the non- the simulations that the solutions are required to be peri-
linear motion. odic with the fixed specified wavelength at each time step.

When Rek , 0, the traveling wave solution is super- The physical domain is embedded in the computational
critical, i.e., linearly stable with respect to the perturbation domain as shown in Fig. 3: there are two columns of ficti-
with the same wavenumber as itself. In this regime, there tious cells on the right of the physical boundary (I 5
is energy transfer to the mean flow mode and the second IMAX-1, IMAX), one row at the top (J 5 JMAX), one
harmonics, and the amplitude of the bifurcated traveling on the left boundary (I 5 1), and the bottom boundary
wave solution equilibrates, independent of the initial am- (J 5 1). The physical domain extends over I 5 2 to IMAX-2
plitude. When Rek . 0, the solution is subcritical and leads and J 5 2 to JMAX-1. The extra cells surrounding the
to a finite amplitude transition. The analysis of [5] shows
that at m 5 0.5, l1 5 0.372, R1 5 10, T 5 0.01, ac 5 6.3,
the bifurcation is supercritical. Specifically, k 5 2156 1
980i. Based on this, increases in initial amplitudes from
small to slightly larger should lead to an equilibration to
the same Hopf mode with the same amplitude as t R y. At
yet larger amplitudes, other types of solutions are expected,
and a purely computational approach is required to
examine time evolution.

3. NUMERICAL IMPLEMENTATION

We begin with the code as described in [18–20, 24]. In
this section, we draw attention to the components that
required modification, and leave the description of the
other components to a minimum.

The VOF method is an Eulerian scheme in which a
function F(x, z, t) measuring the composition of the fluid
is convected by the flow. This is a scalar function

F(x, z, t) 5 5
0, fluid 2,

p, 0 , p , 1, interface region,

1, fluid 1,

(2)

where p denotes the relative volume fraction of fluid 1 in FIG. 3. The upper picture shows the mesh for the computational
each cell intersected by an interface. The nomenclature domain. The fictitious cells are shaded. The physical domain is the un-

shaded region 0 # x # 2f/a, 0 # z # 1. The lower sketch shows a cell.for fluids 1 (lower) and 2 (upper) follows [5] and is the
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physical domain are necessary for computing derivatives. method. The SOR parameter, denoted OMG (1 # OMG
, 2), controls the amount of overrelaxation and is adjustedA cell is also shown in Fig. 3. The x-component of the

velocity is computed at the midpoint of the right hand side to minimize the number of iterations for updating the pres-
sure field. For the numerical simultations reported here,of each cell, the z-component at the midpoint of the top

side, and the pressure and F function are evaluated at we have found that OMG 5 1.8 is an optimal value, above
which the pressure iteration scheme will not converge.the center. Spatial periodicity on the left and right hand

boundaries is imposed on all the variables (the velocity, The tolerance parameter « measures how accurately the
divergence-free condition is discretely satisfied. The choicepressure, and F function) by equating the variables for

I 5 1 to IMAX-2, those of I 5 2 to IMAX-1, and I 5 3 to of « depends on the flow parameters, mesh spacing, and
time step (which is adaptive and decreases when the Reyn-IMAX. The no slip condition is imposed at the bottom

boundary z 5 0 and the horizontal velocity at the top olds number is small or disturbances have relatively large
amplitudes, see Subsection 3.1). A general ‘‘rule of thumb’’boundary z 5 1 is U*p 5 UiUp with Ui 5 1, Up given below

Eq. (1). For the horizontal velocity, the boundary values is to set « to be 1022 times a typical value of u­u/­xu or
u­v/­zu [24]. We have carried out sensitivity studies forare determined by averaging the nodal values for J 5 1

and J 5 2 (bottom boundary) or, respectively, for J 5 the parameter « with a variety of flow parameters, initial
conditions, and mesh structures. We have found that « 5JMAX 2 1 and J 5 JMAX (top boundary), see Fig. 3. The

code is based on dimensional equations. The continuity 1025 is sufficiently small. In fact, with « , 1027 the iterations
may not converge or calculations may become prohibi-equation is recast as a Poisson-like equation for the discret-

ized pressure update, and discretized divergence-free tively slow. The boundary conditions are also satisfied and
the velocity and pressure are now at the new time level.velocity fields. The momentum equations are

Thirdly, the kinematic condition (6) is used to advect the
F function. The algorithm used for this is the SOLA-VOFr F­u

­t
1 (u ? =)uG5 2=p 1 = ? t 1 S*k=F, (4)

algorithm of Hirt and Nichols [26]. The interface shape is
approximated by straight horizontal lines in each cell (cf.
[30]), and donor cell fluxing is used if the motion is primar-t11 5 2e

­u
­x

, t12 5 t21 5 e S­u
­z

1
­v
­xD, t22 5 2e

­v
­z

, (5)
ily tangential to the free surface, while acceptor cell fluxing
is used if the motion is primarily normal. We refer to [26]

where S* is the surface tension coefficient, k is the curva- for a detailed description. The choice of donor vs. acceptor
ture of the interface k 5 2(=S · n), n is the unit normal cell fluxing is designed to keep the interface sharp while
directed into fluid 1, and =S denotes the gradient within avoiding an artificial steepening [26]. A drawback of the
the surface. For the computation, the definition of n is method is its low order accuracy. Indeed, we shall see
extended throughout the entire volume as n 5 =F/u=F u. below that a more accurate tracking of the interface would
After doing so, one finds that k 5 2= · n (see [24]), where be desirable. Methods which use a higher order method
now n and = are defined as quantities in the bulk. The for tracking the interface have been developed [13–15,
function F satisfies the kinematic condition 27–29, 31] and it would be of interest for future work to

study the impact of higher order accuracy in the problem­F
­t

1 u
­F
­x

1 v
­F
­z

5 0. (6) studied here. Some smoothing of the F function is needed
to calculate the curvature and this is done in the CSF
algorithm. A minimal amount of smoothing is provided byBriefly, there are three stages at each time step. The first

is an explicit representation in the momentum equations to a single pass (NSMOOTH 5 1) through the spatial filter.
Since these flows are driven by viscosity stratification andcalculate new velocities using the velocity and pressure of

the previous time step. Volume forces are computed. not capillary forces (as in the jet breakup problem for
instance) further smoothing is not required.Inertial terms use a linear combination of central and

upwind finite differences. A parameter aHN control the
amount of upwinding, and is 0 for the unstable second-

3.1. Stability Conditions
order central differencing and 1 for the overstable first-
order upwinding differencing. The parameter aHN provides The time derivatives in the momentum equations are

handled by an explicit difference scheme, which necessi-a trade-off between numerical stability and computational
efficiency, aHN can be made adaptive so that at each time tates that the time steps Dt be less than roughly the inverse

of the magnitude of the largest eigenvalues of the linearizedstep it is a0 times the minimum value required for stability.
For our calculations we typically find the a0 5 1.2 ensures flow problem. The eigenvalue s for the interfacial mode,

as the wavenumber a R y, is O(a) (O(a3/2) in the inviscidaccuracy and robustness. Secondly, pressures and velocities
in each cell are adjusted iteratively to satisfy the diver- case), while for the bulk modes it is O(a2) due to viscous

damping. In the discretized problem, the analogy is thatgence-free condition by using a successive overrelaxation
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the shortest wavelength 2f/a is the mesh size O(Dx). With dition is the (unstable) interfacial eigenmode with a small
amplitude factor superposed on the linear base flow, soequal spacing in both spatial directions, the discrete stabil-

ity condition which is most restrictive is the one resulting that linear growth in time is expected. The solid line shows
calculations in the fixed laboratory frame, while the dashedfrom the viscous terms which requires that Dt should be

less than a constant multiple of (Dx)2. Specifically, the line was done in a frame moving with the unperturbed
fluid speed at the interface. Clearly the fixed frame resultsconditions for stability mentioned in [24] are: (i) material

cannot move more than one cell in one time step (Courant show spurious oscillations which grow with time. This is
accompanied by severe distortion of the interface. Thecondition), (ii) momentum must not diffuse more than one

cell in one time step, (iii) capillary waves with surface simple remedy of changing to a moving frame removes
this problem. The phenomenon illustrated here does nottension cannot travel more than one cell in one time step,

(iv) once a time step Dt is chosen, there is a stability condi- appear to be a numerical instability in the usual sense,
since the Courant condition is satisfied even in the fixedtion on aHN which the code adapts. These conditions

are, respectively, frame. However, the accuracy of the advection algorithm
for the F function seriously deteriorates if the interface
deforms very slowly in time, but at the same time it is

Dt , Hmin in each cell of [Dx/u, Dz/v],

0.5 (r/e) Dx2 Dz2/(Dx2 1 Dz2),
convected with the flow on a much more rapid time scale.
In order to compute the slow evolution of the interface in
a stable and accurate fashion, it is advantageous to elimi-

(Dt)2 ,
1

4S*
min(r1 , r2) min(Dx3, Dz3),

(7)
nate the rapid motion by convection with the flow. All the
calculations reported below were done in a frame which

aHN 5 min[a0 max(uu Dt/Dxu, uv Dt/Dzu), 1]. moves with the unperturbed interface speed.

One difference between the liquid-liquid jet breakup
3.2. Initial Conditionand the two-layer Couette flow considered here is that the

latter involves much lower Reynolds numbers, and this In order to compare with theory, we require the initial
necessitates taking smaller time steps due to these stabil- velocity field to be continuous and discretely divergence
ity conditions. free. Otherwise, the numerical results would be contami-

We found that changing to a moving coordinate system nated by extraneous modes or mechanisms. At t 5 0, the
was necessary to obtain reasonable results. This is illus- velocity and pressure we input are the base flow (1) plus an
trated by Figure 4. The quantities plotted are the maximum eigensolution. The eigenfunction for the velocity, pressure,
norm and L2-norm of the vertical velocity. The initial con- and perturbation to the interface position, (ue , ve , pe , h),

is equal to Re[(ũe(z), ṽe(z), p̃e(z), h̃) exp(iax 1 st)]. The
Chebyshev-tau scheme is used to discretize the eigenfunc-
tion in z, so that ũe , ṽe , p̃e have the form of, e.g.,

ṽe 5 5oN
0 an1Tn(z1), z1 5 (2/l1)z 2 1,

oN
0 an2Tn(z2), z2 5 (2/l2)(z 2 1) 1 1,

(8)

where zi denotes the z-variables in each fluid which have
been rescaled to [21, 1]. the value N is convergence tested.
The discretized eigenvector consists of the coefficients of
the Chebyshev polynomials for each unknown, plus h̃; the
vector is normalized within the NAG routine F2GJF.

The eigenfunction computed from the linear stability
problem is defined over 0 , z , l1 for fluid 1 and over
l1 , z , 1 for fluid 2, as in Eq. (8). However, the domain
occupied by fluid 1 is 0 , z , l1 1 h and that of fluid 2

FIG. 4. Comparison of results using a fixed frame (solid lines) and is l1 1 h , z , 1. To use the eigenfunction as an initial
a frame of reference moving at the speed of the unperturbed interface

condition, we need to map it to the perturbed domain. A(dashed lines). Upper graph shows log(vmax) against time. Lower graph
simple stretching of coordinates has the disadvantage thatis log(L2 norm) against time. Flow parameters and initial amplitude are

the same as Fig. 8. it destroys the divergence condition. For this reason, we
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input our initial condition for the velocity in fluid 1 as

(u, v)(x, z) 5 S l1

l1 1 h(x)
ue(x, z1), ve(x, z1)

(9a)

1
z1h9(x)

(l1 1 h(x))
ue(x, z1)D.

Here (ue , ve) is the velocity field of the eigenfunction,
defined on the unperturbed region 0 , z , l1 and
z1 5 zl1/[l1 1 h(x)]. The analogous expression for fluid 2 is

(u, v)(x, z) 5 S l2

l2 2 h(x)
ue(x, z2), ve(x, z2)

(9b) FIG. 5. Definition sketch of grid points used to evaluate finite differ-
ence approximation of viscous stresses. The physical interface cuts

2
(z2 2 1)h9(x)

(l2 2 h(x))
ue(x, z2)D , through the cells as shown. The lower fluid has viscosity e1 , the upper fluid

has viscosity e2 . v is computed at the midpoint of the upper boundary, and
u is computed at the midpoint of the right hand boundary of each cell.
­u/­x 5 (u(2) 2 u(1))/Dx, ­v/­z 5 (v(6) 2 v(4))/Dz, ­v/­x 5 (v(4) 2where z2 5 1 1 (z 2 1)l2/[l2 2 h(x)]. The advantage of
v(3))/Dx, ­u/­z 5 (u(5) 2 u(2))/Dz, leading to the computation of t11these expressions is that the divergence condition, as well at node 7, and t22 at node 8.

as the continuity of the normal velocity at the interface,
are preserved.

Although the initial velocity field thus generated is diver-
there are various ways of doing this. In the finite differenc-gence free at the continuum level, it is not discretely diver-
ing scheme, the horizontal velocity u is defined at thegence free. At the first time-step, the velocity becomes
midpoints of vertical cell edges (e.g., points 1, 2, and 5 indiscretely divergence free, but the pressure field that ac-
Fig. 5), while the vertical velocity v is defined at the mid-companies it is spurious for the following reason. One side
points of horizontal edges (points 3, 4, and 6). From this,of the discretized Navier–Stokes equations contains the
one calculates the diagonal components of the stress attime derivative of the velocity, which is approximated by
cell midpoints, while the shear stress is evaluated at cornerthe difference between the new velocity field and the initial
points. In the original VOF code, the viscosity for theone, divided by the first time step Dt0 , which is small. In
diagonal stress components is simply taken to be the meanprinciple, the initial velocity field and the velocity field at
value for the cell (see Eq. (3)), evaluated by using thethe first time step should be close to identical, but they
value of F for the cell, and the viscosity for corner pointsare not, because the initial velocity field is continuously
is found by averaging over the neighboring cells.divergence free while the new one is discretely divergence

This naive interpolation, however, has its drawbacks.free, and this is the main difference. Thus, the approxima-
Basically, it replaces the average of a product (viscositytion to the time derivative of the velocity at this time step
times velocity gradient) by the product of the averages,is related only to the fact that the initial velocity field was
which is badly incorrect for quantities which have a jumpnot divergence free, and has little to do with the actual
across the interface. Better interpolations must take intoderivative. The new pressure field is computed by balanc-
account which quantities are continuous at the interfaceing its gradient to the other side of the Navier–Stokes
and which are not. The issue is discussed in [25] in theequations which is dominated by this time derivative, and
context of one-dimensional heat conduction. There, theso the pressure computed at the first time step is a spurious
heat flux is continuous across an interface, while the tem-response. The way we compensate for this is to run the
perature gradient is not. Along a line segment intersectingcode to the first time step, retrieve the discretely divergence
the interface, the average of the temperature gradient isfree velocity field, and we use that with the initial pressure
therefore approximately equal to the (approximately con-field to start the subsequent computation.
stant) value of the heat flux times the average of the inverse
of the thermal conductivity. Hence taking the harmonic

3.3. Viscosity Interpolation
mean of the thermal conductivity is better than straight
averaging, which would (incorrectly) set the heat flux equalThe evaluation of the viscous stresses in the finite differ-

ence code over cells that are intercepted by the physical to the average temperature gradient times the average
thermal conductivity.interface requires that the viscosity be interpolated, and
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The fluid dynamic analog is somewhat more compli- interface. Hence, even though the code replaces ­v/­x by
its average on the line from 3 to 4, this average would notcated, because velocity is a vector and stress is a tensor,

and in some components the stress is continuous at the differ substantially from the average on the line from 2 to 5.
For future improvements of two-layer codes, it wouldinterface, while in others the velocity gradient is continu-

ous. We develop a refined method of viscosity interpolation be advantageous to develop an analogue of this viscosity
interpolation scheme which is applicable to arbitrary inter-for the case where the interface is close to being horizontal.

If the interface is horizontal, then, because of continuity face shapes. As above, one needs to make a distinction
between those components where the stress is continuousof velocity, we have continuity of ­u/­x, ­v/­x, and, be-

cause of incompressibility, ­v/­z. On the other hand, at the interface and those where the velocity gradient is
continuous. However, since these components are in gen-­u/­z is not continuous at the interface, but t12 5

e(­u/­z 1 ­v/­x) is. The basic idea of the following is eral not aligned with the Cartesian grid, a much more
complicated algorithm would need to be developed.the same which was used in [25] in the context of heat

conduction: The scheme should not replace the average The physically correct viscosity interpolation is im-
portant particularly in flows where the viscosity jump atof a product by a product of averages, if both quantities

jump across the interface. On the other hand, it is reason- the interfaces provides the driving mechanism. While the
‘‘naive’’ method of using simple averages for the viscosityable to multiply the average of a quantity which is discon-

tinuous by the (approximately constant) average of a quan- works in principle, it may significantly reduce accuracy at
the interface.tity which is continuous.

The first diagonal component of the stress is (see Eq. The importance of viscosity interpolation is illustrated
in Fig. 6. The parameters of the simulation are those for(5)) t11 5 2e(­u/­x), and in the finite difference scheme,

­u/­x is replaced by a difference quotient, e.g., (u(2) 2 case (i) of Table II, and the initial condition is as described
in the previous subsection with an initial perturbation tou(1))/Dx for the bottom left cell in Fig. 5. This difference

quotient is the average value of ­u/­x over the horizontal the interface height of A(0) 5 0.001. We observe two
main differences. Firstly, using the refined scheme, vmax(t)line segment connecting points 1 and 2. Hence, away from

the interface where e is constant, the scheme replaces t11 evolves smoothly from the initial data given by the eigen-
solutions (dashed line). As time increases, both vmax andby its average over a horizontal line segment. Our viscosity

interpolation aims to do the same near the interface. If the L2 norm grow at a rate close to that predicted by the
linear theory. However, the original interpolation methodthe interface is nearly horizontal, then u and hence ­u/­x

is continuous across the interface, and hence the average (solid line) produces an initial transient decay which is
shown clearly in the expanded graph in Fig. 6. After thisof t11 can be approximated by ­u/­x times the average of

e. Motivated by this we chose e to be the average of the
viscosity over the line segment on which the difference
approximation for ­u/­x is calculated. For this, we need
to know where the interface intersects this line segment,
and for that purpose, we used a linear interpolation of the
interface position, which is reconstructed from the values
of F. The second diagonal component, t22 5 2e(­v/­z), is
treated in an analogous fashion, i.e., e is chosen to be the
average value of e over a vertical line segment (e.g., the
line segment connecting points 4 and 6 for the top right
cell in Fig. 5).

The shear stress, t12 5 e(­u/­z 1 ­v/­x), requires a
different treatment. We note that, for a horizontal inter-
face, ­u/­z is not continuous across the interface, but t12

is continuous. We want to select the viscosity value such
that this continuity is respected. We can reason that the
average of ­u/­z 1 ­v/­x over any line segment crossing
the interface is the (approximately constant) value of t12

times the average of 1/e. For the shear stresses, we there-
FIG. 6. A comparison of log(vmax(t)) using the original (solid line)fore used a viscosity value which is obtained by averaging

and improved (dashed line) viscosity interpolations. The improved inter-1/e over the line segment used to calculate the difference
polation has less transient behavior (see the enlarged scales on the right

quotient for ­u/­z (e.g., the line connecting points 2 and hand side) and shows better correlation with linear theory. A(0) 5 0.001,
5). We note that if the interface is horizontal, then only a 5 f/2, R1 5 500, m 5 0.5, l1 5 0.372, T 5 0.01, equal densities, and

zero gravity.­u/­z is discontinuous, while ­v/­x is continuous at the
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TABLE Ishort initial decay, both norms grow in time but the magni-
tude of vmax remains uniformly lower than the correspond-

Eigenvalue s Eigenvalue sing norm obtained using the refined interpolation scheme.
a 5 6.3 a 5 f/2

Secondly, after a relatively long time has elapsed (t . 8)
the max norms (given by the two schemes) begin to diverge 0.0040 2 5.8528i 0.0358 2 1.2110i

21.0640 2 9.4618i 20.3039 2 1.9682iand yield quite different solutions. The L2 norms are ini-
21.2226 2 2.9871i 20.3859 2 1.3654itially indistinguishable but these also separate after suffi-
21.2571 2 7.1705i 20.6977 2 2.0669icient time. It is clear that the improved accuracy of our
21.6252 2 4.2410i 20.7407 2 1.0511i

interpolation scheme has an important effect on the long 21.6467 2 5.8447i 21.1802 2 2.0123i
time evolution of the initial data. The error introduced in 21.7713 2 8.3939i 21.2233 2 1.0281i

21.8823 2 9.0432i 21.9937 2 1.9596ithe interfacial region by the original viscosity interpolation
22.3489 2 2.9739i 22.2429 2 1.1267ischeme is first seen in the temporal evolution of vmax and
22.9052 2 8.5604i 22.9947 2 1.9132ieventually propagates throughout the bulk of the fluid,
23.3316 2 3.6714i 23.5287 2 1.1972i

contaminating the L2 norm. In fact, for many flows, we 24.1611 2 0.8515i 24.2079 2 1.8718i
are unable to accurately reproduce the results of linear 24.9762 2 0.3712i 25.0801 2 1.2662i

25.5965 2 0.8468i 25.6408 2 1.8191itheory using the original scheme, whereas using the modi-
fied method we can capture linear growth with a high

Note. Eigenvalues s from the linearized stability analysis of two-layerdegree of accuracy.
Couette flow, calculated using N 5 80 Chebyshev polynomials to repre-
sent the vertical component of the velocity ve . For streamwise wave-
numbers a 5 6.3 and f/2 the first 14 eigenvalues are tabulated beginning
with the least magnitudes of Re(s). The first eigenvalue in each column4. NUMERICAL SIMULATIONS
is the interfacial mode; such that Re(s) 5 O(a2) as a R 0, Re(s) 5

O(2a) as a R y. The rest of the modes are bulk modes, such thatThe first step is to check that the algorithm reproduces
Re(s) 5 O(21) as a R 0, Re(s) 5 O(2a2) as a R y. Other flow

the known theoretical results. These concern the linear parameters are R1 5 500, T 5 0.01, l1 5 0.372, m 5 0.5, equal densities,
and weakly nonlinear regimes for the situation presented and zero gravity.
in Section 2 (m 5 0.5 and l1 5 0.372). The base interfacial
speed is Ui 5 1.0, and plate separation is l* 5 1. Since the
code uses dimensional variables, we fix e1 5 1.0, e2 5 2.0, 4.1. Linear Regime
and choose an interfacial tension coefficient S* 5 0.02 in

Our code captures the linear regime provided the initialEq. (4) so that the nondimensional group T 5 S*/e2 5 0.01.
condition is prescribed carefully on a fine mesh using accu-With this choice of parameters the velocity and pressure
rate viscosity interpolation over the cells which are inter-remain the same as their dimensional counterparts. The
cepted by the interface (see Subsection 3.3) and for suffi-Reynolds number is then prescribed by fixing the dimen-
ciently small initial amplitudes.sional density (r1 5 r2) of the fluids. For the Reynolds

We have chosen a moderately large Reynolds numbernumbers used in Fig. 2, linear stability theory shows that
(R1 5 500) to demonstrate the agreement with linear re-the only unstable eigenvalue is the ‘‘interfacial mode.’’ All
sults. Lower Reynolds number runs require smaller time‘‘bulk modes’’ are stable, as shown in Table I, for example;
steps due to the stability conditions (7). Specifically wethus, we focus on the evolution of an interfacial mode
consider cases (i) and (ii) of Table II, which correspondwhich is unstable due to viscosity stratification. In Subsec-
to disturbances with wavenumbers f/2 and a 5 6.3, respec-tion 4.2, we investigate the nonlinear regime above criti-

cality. Specifically we consider the four cases labeled (i)
to (iv) in Table II.

The initial conditions, described in Subsection 3.2, are TABLE II
normalized so that the interface height is z 5 l1 1 A(0)

Wavenumber Reynolds number Interfacial modecos ax, where A(0) is the initial amplitude and a is the
a R1 Re(s)streamwise wavenumber. The initial velocity field is then

(U(z) 1 (A(0)/h̃)u, (A(0)/h̃)v) where U(z) is the base (i) f/2 500 0.03577
flow (1), and (u, v) is the divergence free eigenvector (9a), (ii) 6.3 500 0.00398

(iii) 6.3 40 0.03450(9b). The evolving flow is then analysed using three main
(iv) 6.3 10 0.0diagnostic outputs: the maximum vertical component of

the velocity v(x, z, t) at each time step denoted vmax(t);
Note. The Reynolds number, wavenumber, and corresponding growth

the L2 norm of the time dependent solution; and the profile rate of the interfacial mode for each of the four cases discussed in
of the interface, reconstructed from the volume of fluid Section 4. Flow parameters are T 5 0.01, l1 5 0.372, m 5 0.5, equal

densities, and zero gravity.function, F.
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FIG. 7. Initial streamwise (left) and vertical (right) velocity components plotted against the height z from the lower boundary at a fixed point
x 5 0.764 and t 5 0. (a) The bulk mode with eigenvalue s 5 21.22 2 2.99i and (b) the interfacial mode with s 5 0.004 2 5.85i. (c) Evolution of
the log of the max norm from the bulk mode initial condition. The slope of the graph agrees with the decay rate given by linear theory. Flow
parameters A(0) 5 0.01, a 5 6.3, R1 5 500, m 5 0.5, l1 5 0.372, T 5 0.01, equal densities, and zero gravity. Results are converged with an 80 3 80 mesh.

tively. For case (ii), we see from Table I that the interfacial 80 3 80 cells (see later comments regarding mesh conver-
gence studies). The log of the max norm depicted in Fig.mode is unstable with a growth rate of Re(s) 5 0.00398,

while all other ‘‘bulk-modes’’ are stable. With a 5 f/2 7c has a slope of 21.22. With other wavenumbers and
Reynolds numbers we have observed equally gooddisturbances grow an order of magnitude faster. The com-

plex wavespeed is s 5 0.03577 2 1.2662i. agreement with bulk modes. Perturbations to the base state
again decay exponentially, according to exp[Re(s)t].The eigenfunctions are normalized so that the perturba-

tion to the interface is A(0) cos ax. The corresponding More spatial accuracy, and refinements on free surface
advection and viscosity interpolation, are required in ordervelocity field for the bulk modes is in general much larger

in magnitude than the interfacial mode over the bulk of to capture the growth or decay of the interfacial mode. In
addition we require a smaller initial amplitude in order tothe flow, whereas the interfacial mode is concentrated in

the interfacial area. The bulk modes are therefore easier suppress the onset of nonlinearity. For case (i), Fig. 8 shows
the evolution of the interfacial mode with an amplitudeto resolve spatially. In Figs. 7a–7c we consider a flow with

Reynolds number 500, wavenumber 6.3, and initial ampli- A(0) 5 0.01. The lower graph of Fig. 8 shows the log of
the L2 norm against time for a coarse and fine mesh. Thetude A(0) 5 0.01. In both Figs. 7a and 7b we plot the

streamwise and vertical components of the velocity against upper two plots show the log of vmax against time. The
max norm is most sensitive to the spacing of the mesh inthe normal coordinate z at the point x 5 0.764 and t 5 0.

The upper and lower plates are at z 5 1 and 0, respectively, the z direction (see center graph). Typically about 160 grid
lines are required along the vertical axis to achieve meshand the base flow (U(z), 0) is scaled so that U(0.372) 5 1.

An interesting difference between the eigenfunctions for convergence. Less refinement is required in the streamwise
direction, vmax is mesh converged with Dx # 0.02, approxi-the bulk and interfacial modes is that for the latter, the

maximum vertical velocity occurs at the mean interface mately (upper graph). Note that unless Dx is small, we see
regularly spaced cusps along the graph of vmax(t). Thisposition, while for the bulk mode it lies in the lower layer.

Comparing the scales in these figures, we notice that the arises from the motion of the location of the true maximum
of the vertical component of the velocity through each cell;bulk mode, Fig. 7a, with eigenvalue s 5 21.22 2 2.99i,

has a corresponding eigenvector v which, when multiplied the Max(v) is computed at the nodes which are at the
midpoint of the top edge of each cell. As the position ofby A(0), is 8% of the magnitude of the base flow, whereas

for the interfacial mode, shown in Fig. 7b, it is only 0.4%. maximum v moves through a cell, there is a fluctuation
before it reaches the next node. This ‘‘ribboned’’ effectThe bulk mode is thus easier to resolve numerically, and

our scheme gives excellent agreement with the linear decay has been correlated with the wavespeeds of the interfacial
mode, and decays as the mesh is refined. Over a shortrate, mesh-converged on a relatively coarse mesh with
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complete quantitative agreement with linear theory which
describes the competition between the growth of short
wavelength disturbances and the stabilizing effect of sur-
face tension. We have not pursued calculations with the
cell height Dz , 0.0025 because of the smallness of time
step imposed by numerical stability constraints.

Accurate reproduction of the linear theory for the in-
terfacial mode necessitates a very small initial amplitude
A(0). In Fig. 9 we show the linear growth of perturbations
with wavenumber a 5 6.3, Reynolds number R1 5 40, and
initial amplitude A(0) 5 0.0001. The upper two plots show
the log of vmax and the L2 norm versus time. After a short
initial transient (which is present even when the initial time
step is reduced) both norms correlate exactly with the
linear analysis which predicts exponential growth with
Re(s) 5 0.0345. Although we illustrate the growth only
as far as time t 5 5, linearity persists until quadratic terms

FIG. 8. Max norms and L2 norms for case (i) of Table II, with initial in A(t) become significant. The interface retains its initial
amplitude A(0) 5 0.01 calculated using a variety of uniformly spaced

cosine shape, moves in the streamwise direction, and growsmeshes: Upper plot shows mesh convergence in the streamwise (x) direc-
exponentially in time, as depicted by the lower graph intion for log(vmax). 160 3 160, solid line; 80 3 160, dotted line; 40 3 160,

dashed line. Note that further mesh refinement in the x direction yields Fig. 9 which shows the interface height at equal time inter-
results which are identical to the 160 3 160 graph. Center plot shows vals. Unlike case (ii) discussed above, these results are
mesh convergence in the vertical (z) direction for log(vmax). 160 3 320, mesh converged using 160 3 160 cells. This highlights the
solid line; 160 3 160, dotted line; 160 3 80, dashed line. Lower plot shows

need for mesh refinement studies for each situation, bothmesh convergence for log(L2 norm). 160 3 320, solid line; 80 3 80,
to check the validity of the results, and also to optimizedashed line.
computation times. Note that if we take O(N) cells in each
direction, then the computation time is O(N4), since both
the number of degrees of freedom and the required num-period of time at least, the L2 norm yields almost identical

results for all grids with Dx # 0.05, Dz # 0.02. The L2 ber of time steps (according to the stability condition (7))
increase proportional to N2.norm shows good correlation with the predicted linear

growth rate Re(s) 5 0.03577, since the log of the norm
grows linearly at a rate of about 0.036. The maximum
vertical velocity is more sensitive to mesh refinement and,
perhaps more importantly, the mesh converged max norm
does not grow exponentially in time. Although the solid
lines in the upper and center graphs of Fig. 8 might appear
to have constant slopes, they actually do not. This becomes
more evident by looking at the upper graph of Fig. 10,
which shows the evolution over a longer time. Nonlinear
effects are clearly important here even after a relatively
short computation time. In fact, for all flows we have con-
sidered, we observe that nonlinearity enters initially in the
neighborhood of the interface. The temporal evolution of
vmax is very sensitive to this onset, while the L2 norm (which
is an average over the entire domain) can remain linear
for a considerable time before nonlinearity finally saturates
the system.

In other cases, particularly if the growth rate of the
interfacial mode becomes very small, further mesh re-

FIG. 9. Log plot of the maximum vertical velocity (upper) and thefinement is often necessary to give converged data. For
log of the L2 norm against time (center) and a plot of the interfaceexample, with flow parameters given by case (ii) in Table
position at successive time intervals (lower) for the flow: A(0) 5 0.0001,

II, we find that although a uniform 320 3 320 mesh yields a 5 6.3, R1 5 40, m 5 0.5, l1 5 0.372, T 5 0.01, equal densities, and
results for vmax which grow exponentially, we require even zero gravity. Linear stability analysis indicates that the growth rate for

the interfacial mode is 0.0345.more cells along the vertical coordinate in order to obtain
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4.2. Weakly Nonlinear Regime ment with the predicted exponential growth of the form
exp[Re(s)t] for infinitesimally small amplitude perturba-

The solution at time t is a smooth function of the initial
tions to the base flow. The quantity g calculated in this

conditions and can be expanded as a power series in the
manner contains, in addition to information on the qua-

initial amplitude, provided A(0) is sufficiently small. This
dratic terms, other information such as the error by which

expansion is not uniform, and, depending upon the other
our initial conditions deviate from being an eigenmode,

parameters present, breaks down as t becomes large. We
remapped to O(h) accuracy.

use this idea to analyse the onset of nonlinearity. We imple-
ment a Richardson extrapolation by expanding vmax as a
function of the initial amplitude A(0), so that 4.3. Wave Steepening Regime

We now consider the nonlinear regime; specifically, we
(10)vmax(t) 5 f (t)A(0) 1 g(t)A2(0) 1 O(A3(0)).

analyse the temporal development from initial conditions
(i) and (iii) in Table II. For both cases we have conducted

For a chosen initial amplitude A1 5 A(0) we calculate the
numerical experiments with initial amplitudes ranging

corresponding norm V1(t; A1) 5 vmax(t) which evolves
from A(0) 5 0.0001 to 0.05. Our mesh convergence studies

nonlinearly in time. Then, with an initial amplitude
have shown that a uniformly spaced 160 3 160 grid yields

A2 5 nA1 (for some value n) we calculate V2(t; A2) 5
identical results to those computed using finer meshes.vmax(t). Neglecting cubic terms in Eq. (10), we obtain ex-
Optimal values for the parameters OMG, a0 , NSMOOTH,

pressions for the linear and quadratic dependence of vmax and « are found to be 1.8, 1.2, 1, and 1025. The initial
on t:

conditions, given by the eigensolution of linear theory, are
mapped onto the perturbed domain, as described by Eq.
(9a) in Subsection 3.2. The ‘‘refluxing’’ of the initial pres-f (t; n) 5

n2V1 2 V2

n(n 2 1)A1
, g(t; n) 5

V2 2 nV1

n(n 2 1)A2
1
. (11)

sure ensures a divergence free velocity field which then
evolves on a frame of reference which moves at the con-

Choosing A1 5 0.01 we see from Fig. 10 that log(vmax) stant speed of the unperturbed interface. In Figs. 11a, 11b
grows fairly linearly initially, but as time increases nonline- and 12a, 12b we show the ‘‘long time’’ development of
arity sets in. The corresponding max norm for double the perturbations with streamwise wavenumber a 5 f/2 and
initial amplitude (n 5 2), A2 5 0.02 shows evidence of supercritical Reynolds number 500. For this situation, case
nonlinearity much earlier. However, the log plot of the (i), we observe the following trends. Small initial amplitude
extrapolation function f (t; n 5 2) is quite linear for time perturbations to the base state grow linearly in time. The
0 , t # 10, and has a slope of about 0.036, in agree- interface slowly evolves from the initial cos(fx/2) shape,

travels in the streamwise direction, and grows in amplitude.
When A(0) # 0.001 this growth is close to exponential in
accordance with linear theory.

With A(0) . 0.01, nonlinear effects become important
almost immediately. A careful analysis of the two norms
shows that this onset occurs near the interface and gradu-
ally propagates throughout the bulk of the two fluids. In
Figs. 11a and 12a we show the evolution of both norms
and the location of vmax(t) for initial amplitudes A(0) 5
0.03 and 0.05, respectively. For both cases, the L2 norms
show linear growth over a significant time while vmax

evolves nonlinearly. With A(0) 5 0.03 the upper left graph
of Fig. 11a shows how log(vmax) initially decays and then
grows. The streamwise location of the maximum vertical
component of velocity moves along with the interfacial
wave. Initially vmax occurs at the nearest mesh point to the
crest of the wave which, as shown in Fig. 11b, evolves
smoothly from its initial height z 5 0.372 1 0.03
cos(fx/2) labeled t 5 0. As time increases, the wave devel-

FIG. 10. Log plot of the maximum vertical velocity for amplitudes ops a steep narrow trough, and location of the max norm
A(0) 5 0.01 (upper graph) and A(0) 5 0.02 (center) against time and

moves towards the wave steepening region (see bottomthe corresponding linear extrapolation f given by Eq. (10) (lower plot),
right plot of Fig 11a). The interfacial profiles shown in Fig.with flow parameters a 5 f/2, R1 5 500, m 5 0.5, l1 5 0.372, T 5 0.01,

equal densities, and zero gravity. 11b are plotted at equal time intervals. We noted that
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FIG. 11. (a) Log plot of vmax and L2 norms against time (top left and top right, respectively). The x and z location of vmax are shown on the
bottom left and right, respectively. Initial amplitude A(0) 5 0.03, wavenumber a 5 f/2, Reynolds number R1 5 500. Other flow parameters m 5 0.5,
l1 5 0.372, T 5 0.01, equal densities, and zero gravity. (b) Gradual onset of nonlinearity leading to wave steepening of the interface. The initial
interface height is z 5 0.372 1 0.03 cos(fx/2). The early development for 0 # t # 14 is illustrated in the upper plot; the lower plot shows 14 , t # 36.
Profiles are shown at equal time intervals. Flow parameters as in Fig. 11a.

although the interface appears to move in the negative x successive interface heights for 0 # t # 14 and the lower
graph shows subsequent evolution 14 , t # 36.direction at a speed of approximately 20.25, this is with

respect to a frame of reference which moves along in the For a larger initial amplitude, A(0) 5 0.05, the wave
steepens more rapidly and is accompanied by strong decaystreamwise direction at the speed of the unperturbed inter-

face. Hence the interface in the original fixed frame actu- in vmax until t 5 7.7 (see Figs. 12a, 12b). Beyond this point
the max norm shifts away from the crest of the interfaceally moves in the positive x-direction with a speed of ap-

proximately 0.75. The upper plot of Fig. 11b shows to the narrow trough where the rapid change is taking

FIG. 12. (a) Log plot of vmax and L2 norms against time (top left and top right, respectively). The x and z location of vmax are shown on the
bottom left and right, respectively. Initial amplitude A(0) 5 0.05, wavenumber a 5 f/2, Reynolds number R1 5 500. Other flow parameters m 5 0.5,
l1 5 0.372, T 5 0.01, equal densities, and zero gravity. (b) Nonlinear wave steepening of the interface for 0 # t # 8. The initial interface height is
z 5 0.372 1 0.05 cos(fx/2). Other flow parameters as in Fig. 12a.
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place. The interfacial perturbation spans 10% of the do- as the wave steepens further. This is illustrated in Figs.
14a, 14b, which show case (iii) with initial amplitudemain initially and as it evolves it grows in amplitude. The

trough of the wave narrows significantly and continuing A(0) 5 0.05 at time t 5 2. Figure 14b uses a finer mesh in
the interfacial region; a quadratically spaced mesh is usedthe calculations for longer times may therefore require

further spatial refinement. where Dzmin is prescribed at z 5 l1 and the number of
mesh points above and below this are specified. Both typesIn Fig. 13 we examine a situation closer to criticality,

case (iii) with R1 5 40, a 5 6.3, and A(0) 5 0.01. Again of viscosity interpolation schemes were used and produced
similar results. The effect also worsens as the Reynoldswe see an interfacial wave which develops a deep trough

with a long flat crest. The wave moves in the streamwise number is lowered. Figure 14c shows computations for
case (iv) of Table II, which is a critical situation accordingdirection slightly slower than the base speed of the unper-

turbed interface. The calculations require a small time step to linear theory. We see that the interface almost immedi-
ately develops into a step structure. The initial amplitudedue to the numerical stability constraints imposed for low

Reynolds number simulations. We note that the wave here is A(0) 5 0.005, so that the interface spans three cells
vertically. As evident in the mesh refinement results ofshape found in the numerical simulations is in good qualita-

tive agreement with the experimental data given in [3, 4]. Figs. 14a, 14b, severe mesh refinement in a neighborhood
of the interface would avoid this problem. However, evenIn particular, the data shown in Figs. 7a, 11, and 12 of [3]

show similar wave distortion with steep fronts and sharp with variable meshes this would be computationally im-
practical, since the time step according to the stability con-troughs, albeit in a saturated regime: Our numerical results

on the other hand lie in the transient regime. With lower dition is determined by the smallest cell size. Hence a more
accurate tracking of the interface location is required forReynolds numbers approaching the critical case (iv) of

Table II, the time for saturation to take place theoretically further progress. We emphasize that the formation of steps
which we observe here is not the instability phenomenonbecomes longer, and this was also found experimentally

in Fig. 14 of [3]. Their data also suggest that saturation which was observed by Hirt and Nichols [26] when acceptor
cell fluxing was used. Indeed, our code is based on thewould be expected for higher Reynolds number cases.

However, we have not been able to follow the interface SOLA-VOF algorithm which was advocated by Hirt and
Nichols to avoid such instabilities. The problem we areevolution to the point where the amplitude saturates for

the following reason. encountering seems to be one of accuracy rather than sta-
bility. Higher order methods of interface tracking [13–15,In the wave steepening regime, the advection algorithm

leads to a ‘‘step’’ structure of the interface, where the shape 27–29, 31] may be useful in overcoming this difficulty.
It is particularly instructive to comment on the formationflattens or steepens discretely along grid lines; this is due

to a lack of accuracy in the scheme. The beginnings of this of steps in the interface for case (iv), Fig. 14c, which is an
onset condition. Here, the growth rate is virtually zero,are visible in Figs. 11–13, and the phenomenon worsens
so the interface is not moving in the vertical direction.
However, the interface is subjected to horizontal shearing.
The steps results from the fluid in each cell moving horizon-
tally, the cells at the same vertical level moving at the
same speed, resulting in horizontal strips of one cell height
moving each with its own horizontal speed. We believe
that the step-like structure forms because the fluid velocity
with which the interface is advected, which is determined
at discrete locations, namely the midpoints of cell edges,
is purely horizontal. This effect is alleviated somewhat
in our higher Reynolds number samples, because of the
combined vertical and horizontal movements so that fluid
particles do not stay within the same horizontal strip of
the mesh. When fluid parcels move vertically as well as
horizontally, the averaging of the velocity takes place in
such a manner that the contours of the F function are
more likely to remain smooth. We conclude that future
improvements of interface tracking should aim at using
more accurate interpolations of interfacial speeds, i.e., the

FIG. 13. Plots of the interface position at equal intervals for 0 # t # 6.
interface should be advected with the speed at the actualThe onset of nonlinearity leads to rapid wave steepening. Initial amplitude
interface position rather than a speed which is determinedA(0) 5 0.01, for a flow with wavenumber a 5 6.3, Reynolds number

R1 5 40, m 5 0.5, l1 5 0.372, T 5 0.01, equal densities, and zero gravity. at the midpoint of a gridline.
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FIG. 14. (a) Uniform 160 3 160 grid, Dz 5 0.00625. The initial interface height is z 5 0.372 1 0.05 cos(6.3x), R1 5 40, a 5 6.3. The interface
position is shown at t 5 2. (b) Quadratically graded 160 3 160 mesh centered at z 5 l1 5 0.372 with 80 above and below, Dzmin 5 0.002. The
interface position is shown at t 5 2. (c) The initial interface height is z 5 0.372 1 0.005 cos(6.3x), R1 5 10, a 5 6.3. The interface position is shown
for 0 # t # 2 at equal intervals.
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